Evidence for Na+/Ca2+exchange in intact single skeletal muscle fibers from the mouse.

نویسندگان

  • Christopher D Balnave
  • David G Allen
چکیده

The myoplasmic free Ca2+concentration ([Ca2+]i) was measured in intact single fibers from mouse skeletal muscle with the fluorescent Ca2+ indicator indo 1. Some fibers were perfused in a solution in which the concentration of Na+ was reduced from 145.4 to 0.4 mM (low-Na+solution) in an attempt to activate reverse-mode Na+/Ca2+exchange (Ca2+ entry in exchange for Na+ leaving the cell). Under normal resting conditions, application of low-Na+ solution only increased [Ca2+]iby 5.8 ± 1.8 nM from a mean resting [Ca2+]iof 42 nM. In other fibers, [Ca2+]iwas elevated by stimulating sarcoplasmic reticulum (SR) Ca2+ release with caffeine (10 mM) and by inhibiting SR Ca2+ uptake with 2,5-di( tert-butyl)-1,4-benzohydroquinone (TBQ; 0.5 μM) in an attempt to activate forward-mode Na+/Ca2+exchange (Ca2+ removal from the cell in exchange for Na+ influx). These two agents caused a large increase in [Ca2+]i, which then declined to a plateau level approximately twice the baseline [Ca2+]iover 20 min. If the cell was allowed to recover between exposures to caffeine and TBQ in a solution in which Ca2+ had been removed, the increase in [Ca2+]iduring the second exposure was very low, suggesting that Ca2+ had left the cell during the initial exposure. Application of caffeine and TBQ to a preparation in low-Na+ solution produced a large, sustained increase in [Ca2+]iof ∼1 μM. However, when cells were exposed to caffeine and TBQ in a low-Na+ solution in which Ca2+ had been removed, a sustained increase in [Ca2+]iwas not observed, although [Ca2+]iremained higher and declined slower than in normal Na+ solution. This suggests that forward-mode Na+/Ca2+exchange contributed to the fall of [Ca2+]iin normal Na+ solution, but when extracellular Na+ was low, a prolonged elevation of [Ca2+]icould activate reverse-mode Na+/Ca2+exchange. The results provide evidence that skeletal muscle fibers possess a Na+/Ca2+exchange mechanism that becomes active in its forward mode when [Ca2+]iis increased to levels similar to that obtained during contraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+ and Na+ currents in developing skeletal myoblasts are expressed in a sequential program: reversible suppression by transforming growth factor beta-1, an inhibitor of the myogenic pathway.

We have analyzed the biophysical and developmental properties of Ca2+ and Na+ currents in C2 muscle cells, whose morphological and biochemical phenotype closely resembles differentiated skeletal muscle. Both fused and unfused C2 myocytes possessed: (1) membrane capacitance consistent with the presence of complex sarcotubular invaginations, (2) tetrodotoxin-sensitive Na+ channels, and (3) "fast"...

متن کامل

Action Potential-Evoked Calcium Release Is Impaired in Single Skeletal Muscle Fibers from Heart Failure Patients

BACKGROUND Exercise intolerance in chronic heart failure (HF) has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC), but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+) release, mandating investigations in skeletal muscle from HF pati...

متن کامل

Altered Ca2+ signaling in skeletal muscle fibers of the R6/2 mouse, a model of Huntington’s disease

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat within the gene encoding the protein huntingtin. The resulting elongated glutamine (poly-Q) sequence of mutant huntingtin (mhtt) affects both central neurons and skeletal muscle. Recent reports suggest that ryanodine receptor-based Ca(2+) signaling, which is crucial for skeletal muscle excitation-contraction coupling (E...

متن کامل

Abnormal Ion Homeostasis and Cell Damage in Muscular Dystrophy

Disruption of cytoskeletal organization caused by genetic defects in the components of the dystrophin-glycoprotein complex (DGC) results in muscular dystrophy and/or cardiomyopathy in human patients and animal models. Accumulating evidence obtained from studies by using skeletal muscle fibers, cultured myotubes, and cardiac muscle preparations from dystrophic animals suggest that defects in DGC...

متن کامل

The off rate of Ca from troponin C is regulated by force-generating cross bridges in skeletal muscle

Wang, Ying, and W. Glenn L. Kerrick. The off rate of Ca2 from troponin C is regulated by force-generating cross bridges in skeletal muscle. J Appl Physiol 92: 2409–2418, 2002. First published February 8, 2002; 10.1152/ japplphysiol.00376.2001.—The effects of dissociation of forcegenerating cross bridges on intracellular Ca2 , pCa-force, and pCa-ATPase relationships were investigated in mouse sk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 274 4  شماره 

صفحات  -

تاریخ انتشار 1998